
Optimization in
Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Optimization
– Find minimum (or maximum) of a given

function
– Curve Fitting, where you find an “optimal“

Model based on a given Data Set, i.e., You
find the model parameters for a selected
model that best fits the data set

• The SciPy Library
• Lots of Python Examples

Contents

Optimization

Minimum

𝑓(𝑥)

𝑥

𝑑𝑓(𝑥)
𝑑𝑥

= 0

Optimization is based on finding the minimum of a given function

𝑓(𝑥)

We find the Minimum
(or Maximum) where
the derivative is zero

• Optimization is important in mathematics,
control and simulation applications

• Basically it is all about finding minimum (or
maximum) of a given function

• E.g., in Model Predictive Control (MPC) you
use optimization to find the optimal control
signal based on some criteria and
constraints

Optimization

Optimization Challenges
Convex Function Non-Convex Function

https://scipy-lectures.org/advanced/mathematical_optimization/

Optimizing convex functions is easy
Optimizing non-convex functions
can be much more complicated

When you have more than one variable (Multiple variables) it also become more complex

Minimum Global Minimum

Local Minimum

https://scipy-lectures.org/advanced/mathematical_optimization/

Optimization - Example

𝐽 = #
!"#

$!

$𝑦 − 𝑟 %𝑄 $𝑦 − 𝑟 +#
!"#

$"

∆𝑢%𝑅 ∆𝑢

The cost function often used in MPC is like this:

So the basic challenge is to solve:
𝜕𝐽
𝜕𝑢 = 0

By solving this we get the future optimal control (𝑢&'()

In this Tutorial/Video we will only go through some general Optimization problems and not
focus on MPC or other specific applications

The optimal control signal
used by the MPC controller

Where 𝑢 is the Control Signal

Optimization

Data Points

𝑦 = 𝑎𝑥 + 𝑏
𝑦 𝑥 = 2𝑥) + 20𝑥 − 22

Find Minimum of a given Function
Curve Fitting

Find an “Optimal“ Model based on a given Data Set

In this video we will go through 2 types of Optimization problems

Minimum

Example: We want to find for what value of x the function has its minimum value

The minimum of the function

(−5, −72)

We can of course find the derivative of the
function and find where the derivative is equal
to zero:

𝑦 𝑥 = 2𝑥! + 20𝑥 − 22

𝑑𝑦
𝑑𝑥

= 4𝑥 + 20 = 0

𝑥89: = −5
𝑦 −5 = 50 − 100 − 22 = −72

This gives:

Example – Find Minimum

Example: We want to find for what value
of x the function has its minimum value

Python Solution:

𝑦 𝑥 = 2𝑥! + 20𝑥 − 22

import numpy as np
import matplotlib.pyplot as plt

xstart = -20
xstop = 20
increment = 0.1
x = np.arange(xstart,xstop,increment)
y = 2 * x*x + 20 * x - 22

plt.plot(x,y)
plt.grid()

i = 0

while y[i] > y[i+1]:
i = i+1

print(x[i])
print(y[i])(−5, −72)

The Python results becomes the
same as the analytical solution:

We use Python to iterate through all
values of 𝑦(𝑥) using a While Loop.
Inside the While Loop we compare 𝑦(𝑖)
and 𝑦(𝑖 + 1). If 𝑦 𝑖 + 1 is larger than
𝑦(𝑖) we have found the minimum.

“Simple“ Solution

Optimization with
SciPy

Hans-Petter Halvorsen

https://www.halvorsen.blog

• SciPy is a free and open-source Python
library used for scientific computing and
engineering
• SciPy contains modules for optimization,

linear algebra, interpolation, image
processing, ODE solvers, etc.

SciPy

• The optimize Module in the SciPy Library
provides functions for minimizing (or
maximizing) objective functions
• Functions:
– fminbound(), fmin(),
minimize_scalar(), minimize()

SciPy

https://docs.scipy.org/doc/scipy/reference/optimize.html

https://docs.scipy.org/doc/scipy/reference/optimize.html

Scalar Function - Example
Given the following function:

import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

def func(x):
y = 2 * x**2 + 20*x - 22
return y

xmin = -20
xmax = 20
dx = 0.1
N = int((xmax - xmin)/dx)
x = np.linspace(xmin, xmax, N+1)

y = func(x)

plt.plot(x,y)
plt.xlim([xmin,xmax])

x_min = optimize.fminbound(func, xmin, xmax)
y_min = func(x_min)

print(x_min)
print(y_min)

𝑦 𝑥 = 2𝑥) + 20𝑥 − 22

We use the optimize.fminbound()
function in the SciPy Library

(-5.0 ,-72.0)

We get the same results as previous example

(same as in previous example)

Multiple Variables
in SciPy

Hans-Petter Halvorsen

https://www.halvorsen.blog

Rosenbrock's Banana Function

https://en.wikipedia.org/wiki/Rosenbrock_function

𝑓 𝑥, 𝑦 = (𝑎 − 𝑥)>+𝑏(𝑦 − 𝑥>)>
The function below is known as Rosenbrock's Banana Function:

We will find the Minimum of this function

This function is used to verify performance
and robustness of optimization algorithms
since it is demanding to find the minimum
for this function.

Rosenbrock’s banana function is a famous
test case for optimization software

The global minimum is inside a long, narrow, parabolic
shaped flat valley. To find the valley is trivial. To converge
to the global minimum, however, is difficult.

https://en.wikipedia.org/wiki/Rosenbrock_function

Rosenbrock's Banana Function

https://en.wikipedia.org/wiki/Rosenbrock_function

𝑓 𝑥, 𝑦 = (𝑎 − 𝑥))+𝑏(𝑦 − 𝑥)))

It has a global minimum at (𝑥, 𝑦) = (𝑎, 𝑎)), where 𝑓(𝑥, 𝑦) = 0
Usually these these parameters are set such that 𝑎 = 1 and 𝑏 = 100. Only in the trivial case
where 𝑎 = 0 the function is symmetric, and the minimum is at the origin.

We will find the Minimum of this function

𝑓 𝑥, 𝑦 = (1 − 𝑥)>+100(𝑦 − 𝑥>)>

We set 𝑎 = 1 and 𝑏 = 100

It has a global minimum at 𝑥, 𝑦 = 𝑎, 𝑎) = (1,1)

https://en.wikipedia.org/wiki/Rosenbrock_function

Rosenbrock's Banana Function
𝑓 𝑥, 𝑦 = (𝑎 − 𝑥))+𝑏(𝑦 − 𝑥))) import scipy.optimize as opt

def banana(x):
a = 1
b = 100
y = (a-x[0])**2 + b*(x[1]-x[0]**2)**2
return y

xopt = opt.fmin(func=banana, x0=[-1.2,1])

print(xopt)

Global minimum at (𝑥, 𝑦) = (𝑎, 𝑎))

Setting 𝑎 = 1 gives global minimum at
(𝑥, 𝑦) = (1,1)

The Python code gives the following
results:

Optimization terminated successfully.
Current function value:

0.000000
Iterations: 85
Function evaluations: 159

[1.00002202 1.00004222]

Note! x[0]=x and x[1]=y

Python – Alternative Code
import scipy.optimize as opt

def banana(var):
a = 1
b = 100
x, y = var
y = (a-x)**2 + b*(y-x**2)**2
return y

xopt = opt.fmin(func=banana, x0=[-1.2,1])

print(xopt)

In previous code example we
used x[0]=x and x[1]=y

The code alternative illustrated
here is probably more readable

var is a NumPy array consisting 2
elements, namely x and y values
in this case

You should also try with other values for 𝑎 and 𝑏
(especially for 𝑎, since a affects the minimum)

Using other
Optimization Functions

Hans-Petter Halvorsen

https://www.halvorsen.blog

SciPy – Other Functions
import scipy.optimize as opt

def banana(var):
a = 1
b = 100
x, y = var
y = (a-x)**2 + b*(y-x**2)**2
return y

xopt = opt.minimize(banana, x0=[-1.2,1])

print(xopt)

import scipy.optimize as opt

def banana(var):
a = 1
b = 100
x, y = var
y = (a-x)**2 + b*(y-x**2)**2
return y

xopt = opt.fmin(func=banana, x0=[-1.2,1])

print(xopt)

Banana Function Examples

Previous Example using fmin() New Example using minimize()

SciPy – Other Functions
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

def func(x):
y = 2 * x**2 + 20*x - 22
return y

xmin = -20
xmax = 20
dx = 0.1
N = int((xmax - xmin)/dx)
x = np.linspace(xmin, xmax, N+1)

y = func(x)

plt.plot(x,y)
plt.xlim([xmin,xmax])

res = optimize.minimize_scalar(func)

print(res)

import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

def func(x):
y = 2 * x**2 + 20*x - 22
return y

xmin = -20
xmax = 20
dx = 0.1
N = int((xmax - xmin)/dx)
x = np.linspace(xmin, xmax, N+1)

y = func(x)

plt.plot(x,y)
plt.xlim([xmin,xmax])

x_min = optimize.fminbound(func, xmin, xmax)
y_min = func(x_min)

print(x_min)
print(y_min)

Scalar Function Examples

Previous Example using fminbound() New Example using minimize_scalar()

SciPy – Other Functions
• The scipy.optimize contains many different optimization

functions that use different optimization methods
• You need to find and use the functions and methods that

is best for your Optimization problem
• This Tutorial/Video only scratches the surface of the

Optimization Topic
• For more information about Optimization in SciPy, read

the documentation:
https://docs.scipy.org/doc/scipy/reference/optimize.html

https://docs.scipy.org/doc/scipy/reference/optimize.html

Curve Fitting

Hans-Petter Halvorsen

https://www.halvorsen.blog

Curve Fitting

Data
Mathematical Model

Curve Fitting is all about fitting data to a Mathematical Model

• Curve Fitting is also an Optimization problem
• You find an “optimal“ Model based on a given Data Set.
• You find the model parameters for a selected model that best fits

the data set

• Python has curve fitting functions
that allows us to create empiric data
model.
• We will show a basic example
• More about Curve Fitting in another

Video/Another part of the Textbook

Curve Fitting

Example
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

start = 0
stop = 2*np.pi
increment = 0.5
x = np.arange(start,stop,increment)

a = 2
b = 10
np.random.seed()
y_noise = 0.2 * np.random.normal(size=x.size)
y = a * np.sin(x + b)
y = y + y_noise

plt.plot(x,y, 'or')

def model(x, a, b):
y = a * np.sin(x + b)
return y

popt, pcov = curve_fit(model, x, y)
print(popt)

increment = 0.1
xmodeldata = np.arange(start,stop,increment)

ymodel = model(xmodeldata, *popt)

plt.plot(xmodeldata,ymodel)

Assume we want to fit some given data to
the following model:

𝑦 𝑥 = a 3 sin(𝑥 + 𝑏)
Data Points (red
dots) used to find the
Model

Model (blue line) found
from the data

[-2.03108093 0.629067] 𝑦 𝑥 ≈ −2sin(𝑥 + 0.6)

Least Square Method (LSM)

𝑌 = Φ𝜃

𝜃-. = Φ/Φ 01Φ/𝑌

The least squares method requires the model
to be set up in the following form based on
input-output data :

The Least Square Method is given by:

The Least Square fit

Data Points

LSM Example
Given the following Data:

𝑥 𝑦

0 15

1 10

2 9

3 6

4 2

5 0

The Least Square fit

Data Points

𝑦 = 𝑎𝑥 + 𝑏𝑦 = 𝑎𝑥 + 𝑏

15 = 𝑎 E 0 + 𝑏
10 = 𝑎 E 1 + 𝑏
9 = 𝑎 E 2 + 𝑏
6 = 𝑎 E 3 + 𝑏
2 = 𝑎 E 4 + 𝑏
0 = 𝑎 E 5 + 𝑏

We need to find 𝑎 and 𝑏

𝑌 = Φ𝜃

15
10
9
6
2
0

=

0 1
1
2
3

1
1
1

4
5

1
1

𝑎
𝑏 𝜃-. = Φ/Φ 01Φ/𝑌

Python Code
import numpy as np

Phi = np.array([[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1]])

Y = np.array([[15],[10],[9],[6],[2],[0]])

theta_ls = np.linalg.lstsq(Phi, Y, rcond=None)[0]
print(theta_ls)

theta_ls = np.linalg.inv(Phi.transpose() * np.mat(Phi)) * Phi.transpose() * Y
print(theta_ls)

From the Python code we get the following results:
[-2.91428571 14.28571429]
This means 𝑎 = −2.91 and 𝑏 = 14.29
Or:

𝑦 = −2.91𝑥 + 14.29

Compare built-in LSM and LMS from scratch

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

